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We investigate the structure of the phase separation line between the pure 
phases in the two-dimensional lsing model, the liquid and vapor phase in lattice 
gas language, at low temperatures. The fluctuations in the location of this line 
are known to diverge in the thermodynamic limit, something which is also 
believed to happen to the continuum liquid-vapor interface in three dimensions 
(in the absence of the gravitational field). We show that despite this global 
divergence it is possible to define precisely the local structure of the phase 
separation line. This has a finite, exponentially small, width at low temperatures 
which is related by a central limit theorem (1) to the width of the global 
fluctuations on the appropriate (divergent) length scale. The latter has been 
computed explicitly C2) for all temperatures below the critical temperature Tc, 
where it diverges as (To -  T) -I/2. We also prove a Gibbs formula for the 
surface tension at low temperature, which relates it to the local structure of the 
phase separation line. 

KEY WORDS: Phase separation; two-dimensional Ising model; surface 
tension, 

1. INTRODUCTION 

We investigate the intrinsic structure of the phase separation line in the 
two-dimensional Ising model. The motivation for this study comes from 
considering the liquid and vapor phase of a simple fluid coexisting in a 
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cubical box V of side L in R 3. In the presence of the gravitational field one 
observes that the region which separates the two phases, called the inter- 
face, has a finite thickness and is stable, i.e., fluctuations of the interface 
are finite and independent of the size of the box V. However if we remove 
the gravitational field there are arguments (see, e.g., Refs. 3 and 4) showing 
that the mean square fluctuation of the height of the interface in the middle 
of the box diverges as log L when L tends to infinity. This divergence is due 
to fluctuations at very long wavelength; see Ref. 4 for an analysis in terms 
of Goldstone modes corresponding to the breaking of a continuous (trans- 
lational) symmetry. We would therefore expect that despite this divergence 
there would be, as for example in the two-dimensional harmonic crystal 
which shows a similar divergence, a well-defined local intrinsic structure of 
the interface which is independent of the gravitational field. Indeed it is this 
intrinsic structure which is studied in the classical theories of van der 
Waals, <5) and Cahn and Hilliard. <6) These theories predict a divergence of 
the interface width, behaving like the bulk correlation length when T-~ Tc; 
see the reviews of Widom, <7) Weeks, (8> Rowlinson, <9> and literature cited 
there. 

It would clearly be very desirable to prove rigorous results for the 
continuum liquid-vapor interface. This seems very difficult, however, and 
even the precise microscopic definition of the interface is nontrivial. We 
can, however, study in detail the analogous situation for the two- 
dimensional Ising model at low temperature where Gallavotti (l) showed 
that the mean square fluctuation of the height of the interface, or phase 
separation line, diverges as ~ in the thermodynamic limit. We find indeed 
that despite this divergence of the location of the phase separation line it is 
possible to define an intrinsic thickness which has a limit as L--> oe and is 
finite (exponentially small) at low temperatures. Unfortunately our meth- 
ods, based on the work of Gallavotti, are limited to low temperatures and 
we cannot, therefore, make any precise statement about the divergence of 
this intrinsic thickness as T-~ Tc from below. Our results however do 
suggest that the thickness may behave, for all T < T c, as the fluctuations in 
the position of the phase separation line divided by f L .  The latter has been 
computed explicitly by Abraham and Reed (2~ by studying the behavior of 
the magnetization as a function of height on the scale v~ .  They find that 
this diverges as (T~ - T)-1/2, which is different from the divergence of the 
correlation length which behaves as (T~ - T)-1. We shall discuss this more 
later: we now give some background. 

2. B A C K G R O U N D  

As is well known the Ising model,  in two or more dimensions, can, at 
low temperatures, exist in two distinct pure phases. These phases are 
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characterized by a spontaneous magnetization + m * ( T ) ;  m * ( T ) >  0 for 
T < T c. (See, e.g., Ref. 10 for a review.) In three or more dimensions 
Dobrushin (11) proved that one can by a suitable choice of the boundary 
conditions, one favoring the " + "  state in the top half of the box and the 
" - "  state in the bottom half, construct at low temperatures a state of the 
infinite system such that as z ~ + oe ( - m )  the state looks like the posi- 
tively (negatively) magnetized pure state while around z = 0 the magnetiza- 
tion re(z) changes from - m *  to + m*, i.e., exactly the kind of state we 
said was impossible in the continuum system due to the adding up of 
arbitrary small deformations possible in the latter. A weaker version of this 
result, valid, however, over a wider temperature range, was later proved 
simply by van Beijeren. (121 Given the existence of such an infinite volume 
state, it is easy to define what is meant by an interface or phase separation 
surface, e.g., we can define the interface as the region of space where 
[m* - m(z)] > Ern* for some E > 0. Of course there is some arbitrariness in 
this definition but any other reasonable definition will give similar results 
for quantities such as the width of the interface as a function of the 
temperature. 

It is also possible in this case to relate the surface tension $ to the 
interface width: taking the derivative of "r with respect to fi (14) gives 

dr _ z~z( (ez )+  _(ez)_+) (2.1) dB 

where e~ denotes the local energy density and the sum is over a vertical line. 
( )+ is the expectation value in the pure state with positive spontaneous 
magnetization and ( ) • is the expectation value in the state constructed by 
Dobrushin. Since [(e~) + -(ez)--- I is very different from zero only in the 
vicinity of the interface Eq. (2.1) provides a link between the structure of 
the latter and ~. Equation (2.1) can be proven to hold at low temperatures 
for d > 3; it is presumably valid, however, all the way to the roughening 
temperature. 

The situation is, however, very different in the two-dimensional Ising 
model. If we construct the same state ( ) •  as Dobrushin did in three 
dimensions then, as already noted, we find (l~ that the mean square fluctua- 
tion of the height of the phase separation line in the middle of the box V 
diverges as ~/T when L becomes infinite. The profile of the magnetization is 
thus washed out in the thermodynamic limit and the resulting state is 
translation invariant with (ez) + = (ez) • for any fixed z, the phase separa- 

tion line having "disappeared to infinity" as _ ~ - .  To "capture" this phase 
separation line, Abraham and Reed (2) computed the scaled magnetization 
profile for this model, 

re(a) -- lim (Oz) [ , with z -- aL a 
L---~ oo 
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where ( ){  is the state with _ boundary conditions in the box V with 
cross section 2L. They found re(a) = 0 if 8 < 1 /2  and re(a) = m* sgna if 
8 > 1/2. For 8 = 1 /2  they found a Gaussian profile. We will show in 
Section 4 that at low temperatures all local averages have a similar 
Gaussian profile due to a central limit theorem proved in the work of 
Gallavotti.(1) 

The rescaled magnetization profile computed by Abraham and Reed 
does not a priori provide an intrinsic definition of the thickness of the phase 
separation line. Rather it is tempting to say that in the two-dimensional 
Ising model the width of the phase separation line is infinite. However, as 
we shall show the local structure of the phase separation line is not 
destroyed in the thermodynamic limit, although the global fluctuations lead 
to the divergence of its position. In particular we shall show that it is 
possible to define an intrinsic width which is finite at low temperature. 
While we cannot see this local structure on the scale of f L  we can use the 
results of Abraham and Reed to get some information on the intrinsic 
width at low temperature and this presumably will remain valid up to T c. 
We shall also derive a formula for d'r/df l  similar to (2.1) providing a 
relation between the intrinsic phase separation line and the surface tension 
in this system. 

The outline of the rest of the paper is as follows. We start Section 3 by 
describing some properties of the pure phase [part (a)]. We then specify the 
boundary conditions which lead to the coexistence of the two phases and 
define the separation line between them [part (b)]. In part (c) we study 
more precisely the statistical distribution of the separation line and decom- 
pose it into elementary constituents. In (d) we state the main result of Ref. 
1 on the global fluctuation of the phase separation line. Finally in (e) we 
give a precise definition of what we mean by the local structure of the 
phase separation line. In Section 4 we make the connection between this 
local structure and the results of Abraham and Reed (2~ on the scaled 
magnetization profile. Section 5 proves the formula for the surface tension, 
while Section 6 describes some speculations about the behavior of the local 
structure near T C. Appendix A contains a proof of the exponential ap- 
proach to the limit in the pure phases for correlations far from the 
boundary. Appendix B proves the equality of two different definitions of 
correlation functions of deformations of the phase separation line. 

3. THE PHASE SEPARATION LINE 

(a) We consider the two-dimensional Ising model on the square lattice, 
k = ((i1,i2) = i : ( i l ,  i 2 + 1/2) E 7/2) with nearest-neighbor interactions of 
the form -Jaiay,  a i = _+ 1, J > 0. There is no external magnetic field. 
Below a certain temperature T c = tic-1 there exist two pure phases ( �9 )+,  
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respectively, ( . ) - ,  which are characterized by a positive, respectively 
negative, spontaneous magnetization (ai)  + =  - ( a i ) - =  m * >  O. These 
two states are obtained using the + or - boundary conditions, i.e., by 
considering a system in a finite box V with the spins outside V fixed at the 
value + 1 ( -  1) and then taking the thermodynamic limit V-~L. The limit 
for the free energy and the correlation functions exists and for the latter the 
convergence is exponentially fast: 

P r o p o s i t i o n  3.1. For any fi :/: tic, there exist two constants a > 0, 
K < oo such that for all V1, V 2 c n_, and A C VI N V2 

[(an)~,--(OA)~2[< K ~  ~ e x p ( - a [ i - j [ )  (3.1) 
i ~ A  j E  VI AV2 

where tr A = 1?[;~Aai. ( )~ is the state in V with + boundary conditions 
and VIAV 2 = (VI\ V2) tO (112\ V1). Moreover, a may be taken proportional 
to fl as fl-~ or 

The proof of this lemma can be found in Appendix A. 
(b) We study now a different boundary condition, one suitable to 

describe the coexistence of the two pure phases. (1'1~'~2) Let AL, M be the box 
{(i1,i2) ~ L: [il] < L,[i2[ < M -  1/2).  We choose the boundary condition 
by fixing the value of a i for i ~ AL, M as follows: 

a t =  +1 ifi2 > 0 

a i = - 1 if i 2 < 0 

The corresponding Gibbs state is denoted by (.)L,M" 
It is convenient to give a geometrical description of the configurations 

of the system (see, e.g., Refs. 1 and 10): we draw the unit segment on the 
dual lattice g_* = ((il, i2):(i 1 + 1/2 , i2)~  7? 2} between each pair of neigh- 
boring spins with opposite signs. Two segments are adjacent if they touch 
each other. A set of segments is connected if any two segments of this set 
can be joined by a path of adjacent segments. We call the connected sets of 
segments contours. Owing to the choice of the boundary condition it is easy 
to see that all contours are closed except for one which starts with the 
segment between ( - ( L  + 1), 1/2) and ( - ( L  + 1), - 1/2) where we have, 
respectively, a spin + 1 and - 1, and which ends with the segment between 
(L + 1, 1/2) and (L + 1, - 1/2). We denote this special contour by ~ and 
the others by 71 . . . . .  "In. 

Let I~'i] and I~[ be the lengths of the contours (i.e., the number of 
segments). Then we can express the energy of a configuration, up to a 
constant CL,M independent of the configuration as 

n 
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We consider the set of all configurations in AL, M with a given common X. 
Since by definition two different contours are disconnected, all spins 
located in the centers of the cells of Q-* which touch X (by a segment or a 
corner) have well-defined values prescribed by X. Let ALM(X) be the 
complementary set in AL, M. AL,M(X ) is composed of several components. 
We have A~,M(X ), respectively, Az~M(~ ), which are connected to the top, 
respectively, to the bottom of AL, M. The boundary conditions (b.c.) for 
A~M(X ) and Az[M(X) are the + one and the - one, respectively (see Fig. 
la). Other components in AL, M(h ) are completely surrounded by X. If we 
compute the expectation value of a spin at site i ~ A + under the condi- L,M 
tion that X is fixed then, by (3.1) the result is, uniformly in L and M, 
exponentially close to + (Oi)L, M with the distance between i and X. We call X 
the phase separation line. 

I~emark. We note that if we change slightly the definition of the 
contours, as is done sometimes, so that a contour does not intersect itself, 
then h is also changed. However the X obtained in this way has also the 
property that it defines two regions where we find the pure phases. This is 
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Fig. 1. (A) Phase separation line k with the boundary conditions specified by k. (B) The defor- 
mations associated to the line X with origins on i2 = 0. 
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the property of )k we use, and, at least at low temperatures, the freedom in 
the definition of 7~ does not play any role. 

Summing over all configurations with a given 2~ we obtain the probabil- 
ity PL,MO k) of )~ in AL,M: 

e - 2flJ]~lZL, g ()k) 
e ,M(x) = (3.2) 

where Z~M is the partition function in AL, M with ___b.c. and ZC,M(~ ) is the 
partition function of the system in AL,M(?0 with the boundary conditions 
specified by 2~. ZL,M(~ ) is a product of partition functions with pure + 
boundary conditions (or -b . c .  which is equivalent by symmetry) in the 
different connected components of AL.M()9" Dividing both the numerator 
and the denominator of (3.2) by Zc+,M, the partition function in At, M with 
+ b.c. we may take the limit M ~  oo since the following limit exists (notice 
that, for L fixed, we have a one-dimensional system): 

and 

lim Z~M= Z-- c 
M~oo Z ~ M  

ZL'M (~) Z ~  exp[ lim - - tT.r ~]_~,~,j 
M--)oo L,M 

Furthermore, for/3 large enoughO'll)[ UL(h)[ ~< KIA[ for some constant K, 
independent of L with K---)0 as/3---) oo. We get therefore the probability 
distribution PL(h) of 2~ for the system confined in A r = {i E U_, [i]J < L) in 
the form 

e x p [ - 2 / 3 J l ~ [ -  UL(~)] 
eL( ) = 

ZL 

(C) We study now the probability distribution PL (2') defined on the set 
of all phase separation lines in A L. This set is the configuration space for 
PL(~). To do this it is useful to have another description of this configura- 
tion space. We define for all points (x, 0) the width Ex(~ ) of )~ at the point 
(x, 0) as the distance between the highest and lowest intersection points of 2~ 
with the vertical line i 1 = x. We wish to describe )~ by its difference from 
the case T = 0 when 2~ is a straight line and E x (~) = 0 for all x. Therefore 
we decompose 7~ into connected components of two kinds: the regular 
components and the deformations. The regular components are horizontal 
pieces of )~ where the thickness of 2~ is zero. The deformations are the parts 
of )~ where the thickness of ~ is nonzero. They are connected to regular 
components because ~ is a connected line (see Fig. lb). 

We measure the size of a deformation W by the quantity 

~r(W) = [ W I - I  j r -  id 
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where [W[ is the number of segments in W and (i l, i2) and (jl,  j2) are the 
coordinates of the first and last points of W, respectively. The first 
coordinate of the first point of W is called the origin of W. For each point i 
of the horizontal line i 2 = 0, we define 

[ j 2 -  i2) if there is a defOrmatiOn W in ~ 
ai(~) = with origin (il, i2) with i~ = i (3.3) 

otherwise 

Notice that if the only deformations were vertical pieces then the variables 
Di would define ~ uniquely. At very low temperature this is essentially the 
case. Describing ?~ from the left to the right we find first a regular 
component (see Fig. lb) then some deformation W. After W we have again 
a regular component at height j2, where (Jl, j2) denotes the last point of W, 
and so on. 

By construction two different deformations are separated by at least 
one regular component. Therefore their projections on the line i 2 = 0 are 
disconnected. To every ?~ we can associate a set of deformations and since 
the relative vertical position of a deformation is fixed by the height of the 
regular component at its left-hand side we need to specify only the origins 
of the deformations. We write 0 = 8(?Q=(W/1, . . . .  IV/.) if h has the 
deformations IV,,, . . . .  W/. with origins i l . . . .  , i,. Since the first and the 
last regular components of ?~ are at the same height we must have ~/Di(~ ) 
= 0. We say that 9 = (W~, . . . .  Wi~ ) is admissible if the projections of 
W/,, . . . .  W/k on the line i 2 = 0 are pairwise disconnected. We have a 
one-to-one correspondence between phase separation lines ~ and admissi- 
ble 0 such that ~iDi(O)=--~Di(h(O))= 0. [We may write O = 0(X) and 
k = k(0).] 

We use this correspondence to define a probability distribution on the 
set f]L of admissible 0 by putting 

PL(O) = ( :  L(X(O )) if~Di(h(O))=Ootherwisei 

Since at T = 0 the phase separation line is just a straight line ~0 
without any deformation it is convenient to introduce UL(O ) = UL(X(O) ) - 
UL(?~0). This function is the effective energy between the deformations. 
Since ~=l~r(W,~) + 2L = ]X I we have 

PI~(O)= ZEIexp[ -2flJ ~ Tr(W'~)- Uc(O) (3.4) 

where Z L is the new normalization constant. 
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The description which we have now obtained for 7~ is similar to the 
description of a configuration of the pure phase in terms of contours ~13) 
and the same techniques can be used to study 2,. The important difference 
is that the energy of 0, Uc(O), is given by many-body long-ranged interac- 
tions with exponential decay. The factors exp [ -  2flJqr( W,~)] play the role of 
small activities for the deformations W,i. Let 0 be any finite admissible set 
of deformations. We define the correlation function 0L(0) by 

OL(O)= ~ e~(O') (3.5) 
OCO' 

The study of ~ is done via the study of the correlation functions, e.g., one 
can use a technique related to the Kirkwood-Salsburg equations. ~1' 13) 

The following results, for large/3, follow from Ref. 1 or can be proven 
as in Ref. 11: 

Proposition 3.2. There exist two constants c and a such that, for/3 
large, 

(a) pL(O ,<< exp[-c~/3~r(0)] 

where ~r(0) -- ~ r ( W ) ,  the sum being over all deformations W of 0, and 

(b) PL(E(x) >>- N) < PL(~r(W) >1 N) < cexp(-aflX) 

in particular, 

eL(E(x)) < 

where PL(E(x)) denotes the expectation value of E(x) with respect to Pz. 

Proof. (a) follows from the estimates of Section 6 in Ref. 1 provided 
one identifies the correlation functions here and those of Ref. 1. This is 
done in Appendix B. (b) follows from (a) and the fact that if E(x) > 0 then 
there exists a deformation W, whose projection on the line i 2 = 0 contains 
the point (x,0). Clearly E(x)< 7r(W), and the number of deformations 
with given ~r(W) and given origin is bounded by C ~(w) for some constant 
C since the deformations are connected subsets of the phase separation 
line. [] 

Remark. Using (3.5) it is easy to estimate the probability that there is 
a very large deformation in )t; [see Ref. 1, Eqs. (8.18) and (8.19)]. Let F(L) 
be some positive increasing function of L. Since in A L we can have at most 
2(L + 1) deformations in a phase separation line 7~, the probability that 
there exists one deformation with ~r(W) >1 F(L) is smaller than 

2(L + 1)c exp [ - aflF(L)] (3.6) 
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Thus the probability that there is one deformation W with ~r(W) > logL 
tends, for large fl, to zero when L tends to infinity. 

(d) The main result of Gallavotti (1) is the computation of the distribu- 
tion of the two random variables h + and h -  defined, respectively, as the 
highest and lowest intersection points of 3  ̀with the vertical line i 1 -- O. 

Proposition 3.3. We have 

. . . .  dt (3.7) lim PL h + < 2 (2~r02)1/2 2~2 

and 

~(L)  1/2 ) 1 ~ ( t  2 ) 
l i m P L ( h - < < - -  - f ;  e x p - - -  dt (3.8) 

L-*~ \ 2 (2~r02)~/2 2o 2 " 

with 0 < 02 < o0, a constant which is temperature dependent and is given 
by (8.8) in Ref. 1. 

Romarks .  (1) Notice that we have the same limiting distribution for 
the two random variables h + and h -  since we have a scaling by (L) 1/2 and 
the thickness of 3  ̀is bounded by log L as L --> m (see preceding remark). (2) 
If we study only the stochastic process D i w e  get the same distribution for 

0 
E i= - ( L  + I)Di �9 

lim Pr ~ Di < - - / ~ m  i=-(L+I)  2 (2~ro2)1/2 e x p  ~ dt (3.9) 

(3.9) expresses the fact that, although the random variables Di are not 
independent, they nevertheless satisfy a central limit theorem. 

(e) We give now a description of the local structure of the phase 
separation line 3  ̀in the thermodynamic limit (L--> m). While 3  ̀itself is at 
infinity in this limit the correspondence between 3  ̀ and admissible sets of 
deformations allows us to study the local structure of 3, using the deforma- 
tions. An analogous situation exists for a one-dimensional harmonic chain. 
In the thermodynamic limit only the correlation functions of the difference 
variables are well defined. However, we may reconstruct from them a 
probability distribution on configurations of the variables themselves by 
fixing, e.g., the variable at the origin equal to zero. 

Let ~2 be the configuration space of all admissible sets of deformations. 
On this space we shall consider the probability distribution specified by the 
correlation functions 

lim oL(O) = #(0) (3.10) 
L---~ o~ 
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which are the limits of the pc(O). The construction envisioned here is the 
same as the construction of Gibbs states for an infinite system via Kol- 
mogorov's theorem: the correlation functions determine a compatible set of 
probabilities for cylindrical events and this defines a probability P on f~ 
which is translation invariant in the i I direction. 

An important property of this probability distribution is that the 
correlation functions approach their limit exponentially fast in L and are 
exponentially clustering, at least for fl large. The following proposition can 
be proven, using the technique of Ref. 1, in a way similar to the proof of 
Proposition 3.2. 

Proposition 3.4. There exist constants ~ > 0 and C < ~ ,  K < oe 
such that, for fl large enough, we have the following. 

(a) For all L, L'  with L'  > L, 

~,  [pL(O)--pc{0)[ ~< C ~,, e x p [ - x f l l s -  tl] (3.11) 
O c A  L t E D  

O = ( W t ,  t E D )  s : L ' - - L  <<.N< L" 

where D is a finite subset of the line i 2 = 0 and [s[ runs on this line between 
L ' -  L and L'. 

(b) Let 01 and 02 be two admissible finite sets of deformations such 
that the deformations of 01 are at the left-hand side of each deformation of 
02. Let d(O 1, 02) be the distance between the projections of 01 and those of 
0 2 on the line i 2 = O. Then 

[0(01U 0 2 ) -  0(01)0(02) I < Kexp[-xf ld(01,02)  ] �9 (3.12) 

Using the deformations we are able to study the local structure for the 
phase separation line in the thermodynamic limit. In analogy with the 
one-dimensional harmonic chain mentioned above, one can reconstruct a 
phase separation line )t from a given admissible set of deformations by 
specifying that the origin of the first deformation to the right of (0, 0) is at 
height i 2 = 0. This construction allows us to define a probability distribu- 
tion P on the set of interfaces satisfying this condition, which is induced by 
the probability distribution on f~ constructed above. As the previous 
proposition shows, the probability of having a given shape in the interval 
[ - N ,  + N] is almost independent of the shape of ~t far from this interval. 
So the effect of the distant deformations is relevant only for locating this 
piece of ~t vertically but does not influence the "intrinsic shape" of )t. 

To summarize: We have shown that at low temperature there is a 
well-defined local structure for the phase separation line ~t even in the 
thermodynamic limit. 

A measure of the intrinsic width of the interface i s  (Dg) 1/2 where ( ) 
is the expectation value in the state P just defined and D O is given by (3.3). 
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By Proposition 3.2 this width is finite at low temperature. Note that by 
Proposition 3.1 the finiteness of this width implies that the width of the 
region where m* - Io7 (291 is larger than era*, 0 7 - (X) being the expectation 
of o; given the line X, has a finite expectation value. This is another way of 
saying that the intrinsic width is finite at 10w temperatures. 

4, THE MAGNETIZATION PROFILE 

Using the ideas of Section 3, we shall now compute a rescaled 
magnetization profile and compare our result with the explicit computation 
of Abraham and Reed. (2) 

Let A be any finite set of 1_ such that (0, 1/2) E A. Let o A = l~;eAoi 
and A t --- {(i1,i2)~ 1-;(i1,i 2 - t ) ~  A}. We compute the profile of this ob- 
servable on the scale (L)I/2, when L goes to infinity. 

Proposition 4.1. Let t = a ( L / 2 )  1/2, then for large/3 

(a) lim PL(%,) = (~  + if IA[ is even (4.1) 
L--+oo 

al ) if IAI is odd (b) L~oolim PL(oa,) = sgna(oa>+ep ~ o  ' 

q)(x) = 2_~ ('=e-,~au 

(4.2) 

Proof. We consider the special case where A = ((0, 1/2)} and put 
a t = oA,. Let e > 0. We compute first the conditional expectation value of o t 
given that h + (•)< ( a -  e)~/L/~- .  From (3.6) we have that the distance 
from t to X tends to infinity (with probability 1) when L--)oo. Since 
t E A Z (X) (see definition of the interface) this conditional expectation value 
is by Proposition 3.1 (%)+ at the limit L ~  oo. Similarly the conditional 

expectation value of 0 t given that h - ( X ) > / ( a - e ) v ~ / V ~ -  is (Oo)- = 
-(Oo) + at the limit L ~ oo. Taking e arbitrarily small and using (3.7), (3.8) 
we get 

) : (  t (' 11 _ _  u 2 o~ exp lira eL(at) = (%)+ 1 exp - du - s - du 
o+ gg o 

= (Oo) + sgnaep( lal 

The proof for the general case is just the same. �9 
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Abraham and Reed computed the magnetization profile and found for 
all T < Tc, the critical temperature, that 

lim PL(at) = (o0) + s g n ~  ~ (4.3) 
L---~ o~ 

with 

b z = sinh 2 ( K -  K*), e -2K* = tanhK, K = /3J  (4.4) 

Therefore we have that the o defined by (3.7) is given by 

1 /o  2 = b 2 = s i n h 2 ( K -  K*) (4.5) 

The link between (3.7) and (3.8) proven for/3 large on the basis of 
Gallavotti's result and Eq. (4.3) of Abraham and Reed is straightforward: 
in both cases the quantity computed is the same, namely, the distribution of 
the middle part of ~ on the scale ~/L. This explains the Gaussian character 
of the rescaled magnetization profile. The result (4.3) suggests very strongly 
that (3.7), (3.8), and (3.9) are valid up to T c with o 2 given by (4.5). 

Remarks .  (1) It is not difficult to show that in the limit L ~ oo 

0 2 = ~ (DoDi)  (4.6) 
i 

as expected from (3.9). (2) Notice that if 0 2 is given by (4.5) then 

o 2 ~ ( T c -  T) -1, T~T~ (4.7) 

We shall return to this point in Section 6. 

5. THE SURFACE TENSION 

In this section we prove a formula for the derivative of the surface 
tension ~- with respect to fl which is similar to the Gibbs formula proven in 
Ref. 14. This gives some connection between ~- and the phase separation 
line 2t. We need more notation. Let 

and 

§ + 
,c&M = log(ZzsM/Z[~,M ) (5.1) 

1 ex= - ~ o x J  ~ oy (5.2) 
y :  

IIx-yl[ = ! 

the local energy density at x E ~_. We define the surface tension by 

1 ~" = - lira lira ~L M ( 5 . 3 )  
L-~oo 2(L + 1) M ~  ' 
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and refer the reader to Ref. 15 for a proof of the equivalence of this 
definition to other definitions. We compute first 

d'Ct'M - E ((ex)c+,M -- (ex)~,M) 
dfl XEAL, M 

= E eLM(X) Y, [(ex)[,M--(ex)~,M(X)l 
~k~AL, M X ~ A L , M  

where ( �9 )L, M00 is the expectation value when we fix the phase separation 
line. We introduce 

+ + 
fL,M(il lN)=E[(e(q,i2))L,M-- (e(i,,i2))L,M( )] (5.4) 

i2 

so that 

d'rL'U -- E E PL,M (A)fL,i (il I X) = ~ PL,M (fL,M (i, [ ")) 
dfl il h il 

(5.5) 

ProposlUon 5.1. Let fi be large enough and let 

f (0[)  0 = ~ [(e(0,i2)) + -- (e(o,i2)) +- (~)] 
i2EZ 

where 7~ is the phase separation line reconstructed by specifying that the 
origin of the first deformation at the right of (0,0) is at height i 2 = 0. 
( )-+ ()t) is the state in A (X) [whose definition is analogous to that of 
At,M()0] with the boundary conditions specified by X. Then, with P defined 
in Section 3(e), 

d~- (5.6) dB - e ( f ( 0 l  )) 

P(f(O[ )) being the expected value of f(O[ ) with respect to P. 

We consider first the limit M--~ oo in (5.5) and show that this Proof. 
limit is 

with 

d lim ~'LM = EPL(fL( i1( ' ) ) )  
dj~ M - ~  ' il 

(5.7) 

fL(i, iX) = Z [ ( e(,,,i2)) ~ - e(i,,iz)) L ()t) 1 
i2 

Since the sum over i 1 is finite we look only at a particular value il = O. We 
divide the sets of phase separation lines in AL, M respectively in A L into two 
classes: E = {X:~r(0(X)) < L*) and E C which is the complement of E in 
AL, M respectively in A L. (We take M large enough so that E is the same in 
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A L and AL,M. ) If h e  E c then [fL,M(O[?O[ < c~(O(?O) and [fL(01?0[ 
< c~r(O(~)) with some constant c. On the other hand, since PL,M(?Q, 
respectively, PL(?Q, is exponentially small in 7r(0(~)) the error e(L*) which 
we make when we replace the set of all interfaces by the set E in computing 
the expectation values of fL,M, respectively, fL, goes to zero when L* ---> oo. 
We choose now M > L * +  2L'  with L'  large. Since for ?t ~ E and [i21 
> L* + L' the distance from i 2 to X is larger than L' we have 

1 2 [  + -  + (ff(O,i2))L,M (e(o,/2))L,M(/~')] • E ( L  t) 
[i2[ > L* + L" 

with e(L')-~O when L'-~ oo (see Proposition 3.1). The same is true for the 
corresponding expression in A L. Again by Proposition 3.1 we have that 

1i21 + + 
[ ( e(o,i2)> L -- ( e(o, i2)>; (~') ] 

< L * + L '  

y [ + + ] 
- -  ( e ( o , i 2 ) )  L , M  - -  ( e( o i2)) L M (X) 

[i2[ ~< L* + L '  

4- + 
< ~,, t(e(o,i2))L - (e(o, i2))L.M [ 

Ii:I<L*+L' 

+ ~ I(e(o,/~))~. (;k) - (e(o,i~));,M(A)l < e(L ' )  
Iiz[ < L* + L '  

We have to prove now that 

lira l L-~oo 2(L + 1) ~.PL(fL(il I ' ) )  = P ( f ( 0 l  ")) (5.8) 
Ii 

First of all we have a uniform bound on PL(fL(il(')) with respect to i 1 and 
L. This follows from (3.1), (3.12), and Proposition 3.2 since the influence of 
a deformation on fL(i112~) decays exponentially with the distance of its 
origin to i I [(3.1) and (3.12)]. Furthermore the contributions of large 
deformations are exponentially small (Proposition 3.2). Therefore, 

lira 1 ~ PL(fL(i I ] ' ) )  = 0 (5.9) 
L~oo 2 ( L +  1)L_L~<Ii,I< s 

if 0 < 3 < 1. It is therefore sufficient to prove that PL(fL(ill .)) tends to 
P(f(OI.))  exponentially fast with L becoming infinite for lii[ ~< L - L 8. 

It is clear from the definition offL( i  I~) a n d f ( i  120 and Proposition 3.1 
that for lill < L - L~,fL a n d f  are exponentially close, in N, tOfu, where in 
fN we replace the separation lines ~ by ~N which has the same deformation 
as 2t for those with origin in [i~ - N, i~ + N] and none outside this interval. 
This is true at least for those 7t which do not have a too large deformation 
with its origin outside [il - N, i I + N] that would come over the interval 
[i I - N /2 ,  i 1 + N/2]. However the probability of such large deformations 
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is, by Proposition 3.2, also exponentially small with N. On the other hand, 
limL-,oo PL(~W) = P(~w) because to specify hu is nothing else but to specify 
a set of deformations with origin on [ - N, + N]. Combining these two facts 
and (5.9) the result follows. [] 

6. DISCUSSION 

We have obtained rigorous results about the local structure of the 
interface in two dimensions at low temperature. In particular we have 
shown that the interface region has a finite intrinsic width as it does in 
three dimensions although this region is at infinity in the two-dimensional 
lattice. We now make some speculations about the width at higher tempera- 
tures in three and two dimensions. 

(i) The formula giving the surface tension shows that "r depends only 
on the local structure of the interface as is the case in the three-dimensional 
Ising model at low temperatures, e.g., (2.1), when the interface is stable. It is 
believed (16) that there exists in three dimensions a roughening temperature 
T R, which is less than Tc, above which the state constructed by Dobrushin 
is translation invariant. It is possible that for T R < T < T c, dz /d f l  will be 
given by a formula like (5.6). Thus if the local structure of the interface is 
not affected as we cross T R the surface tension could remain smooth. It is 
generally believed at present (23) (see also Ref. 24) that there is a weak, 
possibly essential, singularity of ~- at T R. 

(ii) As already noted (last remark in Section 4) b - I ~ ( T -  To)-1/2 as 
T o  T c. Assuming that (4.5) holds up to Tc (it seems hard to imagine at 
which lower temperature it would cease to be valid), we may rewrite o 2 in 
(4.6) as a sum of two terms: 

o 2 = ( D  2) + ~ (DoDi) 
ir  

If the second term ~ir  is positive or if it does not diverge any 
faster than (D0 2) as T ~  Tr (we are unable to prove either of these 
assumptions), then we conclude from (4.5) and (4.7) that the intrinsic width 
(D~)  1/2, as defined in Section 3(e)diverges like ( T -  Tc) -1/2 as T--> T~, 
i.e., slower than the bulk correlation length ~ 1  T -  T~I-1. 

If all the above assumptions were true then according to our definition, 
the intrinsic width would not diverge like the correlation length. A possible, 
very tentative, way out of this dilemma is to note that the deformations 
which are far from the vertical line i 1 = 0 have no influence on the shape of 

near this vertical line. If we compute a local magnetization profile along 
the line i I = 0 we can use instead of X a phase separation line ~t(T) obtained 
by fixing the height of ~, at the left-hand side of the interval [ - I ( T ) ,  
+ / ( T ) ]  at zero. We get then a profile which depends on I(T). We can now 
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choose l(T) to be of the order of the correlation length of the system. If 
(3.7) and (3.8) remain asymptotically correct for this interval [ - / (T ) ,  
+ I(T)] when T ~  Tr we should obtain together with (4.6) a width for the 
profile which diverges like the correlation length ( ~ ] T -  T~1-1. We note 
that Weeks (8) has used a similar description of the intrinsic width of the 
continuum liquid-vapor interface in d = 3. He gives arguments that theo- 
ries of van der Waals type, which predict a finite thickness at T < T~, are 
indeed local theories of the interface, dealing essentially with a subsystem 
with an interfacial cross-sectional area of the order of the square of the 
correlation length. 
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A P P E N D I X  A. 

We prove here Proposition 3.1 in a slightly more general form, namely, 
we show that the exponential decay of the (truncated) two-point correlation 
function implies that all the finite volume correlation functions approach 
their thermodynamic limit exponentially fast. This is based on correlation 
inequalities. Since the converse statement was proven by Martin-L6f, 07) 
we have therefore an equivalence, for Ising spin systems pair ferromagnetic 
interactions, between exponential approach to the thermodynamic limit 
and exponential decay of the correlation functions. 

Note also that the exponential decay of the two-point function can be 
derived from the explicit solution (is) and the correlation inequalities of Ref. 
19 for the state under consideration. 

Proof of Proposition 3.1. Since ~ , i @ A a i  - -  04 is increasing in the 
F.K.G. sense (2~ and since the state ( + dominates the state ( )~, or > V  t fq V 2 
( )~= in the same sense, we may write 

- - v 2 -  (0`4) 2 ( 0 ` 4 )  VI ~ ~'z 2 ( 0 ` 4 ) V  l "~- 
< + + + + 

<)-~ + + + + 
( a i )  v ,  n v2 

l E A  

But 

where < )hv, 

j~ \v2 

is the state in V 1 with + boundary" conditions and an external 
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field h acting on all spins in Vl\ V 2. By the G.H.S. inequality, (21) (OiOj)hV -- 
h h (Oi)v,(Oj)v2 is monotone decreasing in h and its value at h = 0 is increasing 

in Vp Therefore 

~gioj)hv, -- ~gi)h (oj)hv, <-~ (OiOj) + -- ~oi) + (Oj) + < exp [ -- d(i  -- j )  ] (A2) 

where the second inequality follows from the explicit solution. 0s'19) 
On the other hand we may estimate 

(Oioj)hvl _ h h e x p ( -  ch) (13) (oi)v,(oj> v, < 

uniformly in V 1. This is because: Probability that o i = + 1 = ((1 + oi)/2)hv~ 
> 1 -  exp( -eh)  uniformly in V 1. To get the last inequality we bound 
((1 + 03/2)~, from below (Griffiths' inequalities (22)) by the expectation 
value of (1 + el)~2 taken at site i with no coupling with the outside which is 
equal to tanh h. 

Taking the product of the square roots of (A2) and (13) in the r.h.s, of 
(A1) concludes the proof, m 

APPENDIX B. 

We sketch the proof of the identification between the correlation 
functions of the deformations considered in this paper and those of Ref. 1. 
The problem is simply that in the sum (3.5) PL(O') is zero unless D(O) 
= ~iDj(X(O)) = 0, while in Ref. 1, Eq. (6.5), the definition of PL(O') given 
is extended by a formula like (3.4) to all admissible 0', also with D(O') v a O. 
This is because it is easier to use the Kirkwood-Salzburg equation for an 
ensemble of deformations which is not constrained by a long-range hard- 
core like D(O) = 0. Let pL(0) be defined as in (3.5). If we call q%(0) the 
numerator of (3.4) and define it also for 0 with D(O) ~ 0, we may write 

~o f - L  ei'D(~176 + O')dt 
= 

Xo ff 
while p)~(0) which corresponds to Eq. (6.5) of Ref. 1 is 

o;(o') = 

We want to show the following. 

ProposiUon. We have 

lim 

+ O) 
0 

 L(o) 
0 

- 1  for all 0' 
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and 

Proof. For this it is enough to show that 

1 / 2 q ' l f _ ~ o  ~PL(O)e i tD(O)dt  
c + o ( , )  

(0) 
0 

1/27r(  ~ ~ L ( O  + O')ei'D(~176 
J -- ~7 0 

_ c + ( B 2 )  

0 

with the same c in both equations [e = [(2~r)l/2o]-l]. The first equation is 
exactly (8.13) of Ref. 1. 

To prove the second equation, define cp~(0) = cpL(O + O')/Cpr(O' ). 
It is not hard (but lengthy) to show that using the technique of Ref. 1 

one can derive the same Kirkwood-Salzburg equations for the Gibbs factor 
q~(0) as for the CPL(O ) and that the corresponding rp T satisfy 

E - < (B3) 
0 

uniformly in L. This last estimate is because the influence of 0' is exponen- 
tially small on the opT(0) for 0 far from 0'. 

Then we write the right-hand side of (B2) as 

1 / 2 ~  ~o ~rL(O)eitD(O)eitD(O" dl 

2 4(0) 
8 

Applying the same arguments (with q0~ instead of CPL) that lead to (8.13) in 
Ref. 1 with k = - D(O') we obtain the same result but with a 0 2 defined via 
Ref. l, Eq. (8.8), with q0' instead of cp. However, owing to (B3) the two o 2 
coincide. Moreover since k = D(O') is independent of N, exp(-k/ /2N(r  2) 
= 1 + o ( 1 / N )  which finishes the proof. 
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